skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vespignani, Massimo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerous recent advances in robotics have been inspired by the biological principle of tensile integrity — or “tensegrity”— to achieve remarkable feats of dexterity and resilience. Tensegrity robots contain compliant networks of rigid struts and soft cables, allowing them to change their shape by adjusting their internal tension. Local rigidity along the struts provides support to carry electronics and scientific payloads, while global compliance enabled by the flexible interconnections of struts and cables allows a tensegrity to distribute impacts and prevent damage. Numerous techniques have been proposed for designing and simulating tensegrity robots, giving rise to a wide range of locomotion modes including rolling, vibrating, hopping, and crawling. Here, we review progress in the burgeoning field of tensegrity robotics, highlighting several emerging challenges, including automated design, state sensing, and kinodynamic motion planning. 
    more » « less
  2. null (Ed.)
  3. Tensegrity rovers incorporate design principles that give rise to many desirable properties, such as adaptability and robustness, while also creating challenges in terms of locomotion control. A recent milestone in this area combined reinforcement learning and optimal control to effect fixed-axis rolling of NASA’s 6-bar spherical tensegrity rover prototype, SUPERball, with use of 12 actuators. The new 24-actuator version of SUPERball presents the potential for greatly increased locomotive abilities, but at a drastic nominal increase in the size of the data-driven control problem. This paper is focused upon unlocking those abilities while crucially moderating data requirements by incorporating symmetry reduction into the controller design pipeline, along with other new considerations. Experiments in simulation and on the hardware prototype demonstrate the resulting capability for any-axis rolling on the 24-actuator version of SUPERball, such that it may utilize diverse ground-contact patterns to smoothly locomote in arbitrary directions. 
    more » « less